Introduction to Formal Group Laws GRK Retreat 2024

Pengcheng Zhang

September 16, 2024

BERGISCHE UNIVERSITÄT WUPPERTAL

**RUHR
UNIVERSITÄT BOCHLIM**

隱

つへへ

す?★そこは「そんです」

Definition

Let R be a commutative ring with identity.

Definition

A (one-dimensional) formal group $\mathscr F$ over R is given by a power series $F(x, y) \in R[[x, y]]$ satisfying the following axioms:

(1)
$$
F(x, 0) = X, F(0, Y) = Y
$$
(Identity).

(2)
$$
F(x, F(y, z)) = F(F(x, y), z)
$$
 (Associativity).

If $F(x, y) = F(y, x)$ is also satisfied, the formal group $\mathscr F$ is said to be commutative.

 $\mathbf{A} \times \mathbf{B}$, $\mathbf{B} \times \mathbf{B}$

Definition

Let R be a commutative ring with identity.

Definition

A (one-dimensional) formal group $\mathscr F$ over R is given by a power series $F(x, y) \in R[[x, y]]$ satisfying the following axioms:

(1)
$$
F(x, 0) = X, F(0, Y) = Y
$$
(Identity).

(2)
$$
F(x, F(y, z)) = F(F(x, y), z)
$$
 (Associativity).

If $F(x, y) = F(y, x)$ is also satisfied, the formal group $\mathscr F$ is said to be commutative.

The existence of inverses is automatic. For a formal group law $F(x, y)$, the inverse $i(x)$ of x is determined by the equation $F(x, i(x)) = 0.$

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

 \bullet : The formal additive group, denoted by $\hat{\mathbb{G}}_{\mathsf{a}}$, is given by the formal group law $F(x, y) = x + y$.

•: The formal multiplicative group, denoted by $\hat{\mathbb{G}}_m$, is given by $F(x, y) = x + y + xy$.

 \mathbf{A} of $\overline{\mathbf{B}}$, \mathbf{A} 4 伊 ト 4 国 \equiv \cap \cap

 \bullet : The formal additive group, denoted by $\hat{\mathbb{G}}_{\mathsf{a}}$, is given by the formal group law $F(x, y) = x + y$.

•: The formal multiplicative group, denoted by $\hat{\mathbb{G}}_m$, is given by $F(x, y) = x + y + xy$.

Theorem

If $F(x, y)$ is a formal group law over R and $F(x, y) \in R[x, y]$, then $F(x, y) = x + y + cxy$ for some $c \in R$.

KADY E KEPITE KAD

 \bullet : The formal additive group, denoted by $\hat{\mathbb{G}}_{\mathsf{a}}$, is given by the formal group law $F(x, y) = x + y$.

•: The formal multiplicative group, denoted by $\hat{\mathbb{G}}_m$, is given by $F(x, y) = x + y + xy$.

Theorem

If $F(x, y)$ is a formal group law over R and $F(x, y) \in R[x, y]$, then $F(x, y) = x + y + cxy$ for some $c \in R$.

Theorem (Commutativity theorem)

Every one dimensional formal group law over a ring A is commutative if and only if A contains no element $a \neq 0$ that is both torsion and nilpotent.

ARAYEYYEY E VOOR

Homomorphisms

Definition

Let $F(x, y)$, $G(x, y)$ be two formal group laws over R. A homomorphism between them is a power series $f(T) \in R[[T]]$ such that

$$
f(F(x,y)) = G(f(x), f(y)).
$$

BERGISCH

KADYKEY E YOON

NIVERSITÄT

Homomorphisms

Definition

Let $F(x, y)$, $G(x, y)$ be two formal group laws over R. A homomorphism between them is a power series $f(T) \in R[[T]]$ such that

$$
f(F(x,y)) = G(f(x),f(y)).
$$

Definition

A homomorphism $f(T)$ between two formal groups $F(x, y)$ and $G(x, y)$ over R is an isomorphism if there exists another power series $g(T)$ such that

$$
f(g(T))=g(f(T))=T.
$$

Examples of isomorphisms

Let $E(x)$ and $log(1 + x)$ be the following power series

$$
E(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}, log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.
$$

Then they are isomorphisms between the additive formal group $\hat{\mathbb{G}}_{\mathsf{a}}$ and the multiplicative formal group \mathbb{G}_m over $\mathbb Q$ and inverse to each other.

Let $E(x)$ and $log(1 + x)$ be the following power series

$$
E(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!}, log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}.
$$

Then they are isomorphisms between the additive formal group $\hat{\mathbb{G}}_{\mathsf{a}}$ and the multiplicative formal group $\hat{\mathbb{G}}_m$ over $\mathbb Q$ and inverse to each other.

An interesting fact is, they are no longer isomorphisms when we replace $\mathbb Q$ with a field k of characteristic $p > 0$. To see this, we need the notion of [n]-series.

Definition

For each integer *n* and a given formal group law $F(x, y)$, the n-series is defined by

$$
[1](x) = x
$$

\n
$$
[n](x) = F(x, [n-1](x)), n > 1
$$

\n
$$
[-n](x) = i([n](x)).
$$

Moreover, they satisfy

$$
[n](x) \equiv nx \mod x^2
$$

$$
[m+n](x) = F([m](x), [n](x))
$$

$$
[mn](x) = [m]([n](x))
$$

BERGISCH

Example

For the formal group $\hat{\mathbb{G}}_a$, one can easily check that $[n]_{\hat{\mathbb{G}}_a}(x) = nx$, for $n \geq 0$.

RERGISCHE PERTAL

 \mathbf{A} of $\overline{\mathbf{B}}$, \mathbf{A} 4 伊 ト 4 戸 \equiv \cap $\alpha \wedge$

Example

For the formal group $\hat{\mathbb{G}}_a$, one can easily check that $[n]_{\hat{\mathbb{G}}_a}(x) = nx$, for $n > 0$.

Example

For the formal group $\mathbb{\hat{G}}_m$, one can easily check that $[n]_{\hat{G}_m}(x) = (1+x)^n - 1.$

4 伊 ト 4 国 \mathbf{p} , and \mathbf{p} is \mathbf{p} . \equiv \cap $\alpha \wedge$

Example

For the formal group $\hat{\mathbb{G}}_a$, one can easily check that $[n]_{\hat{\mathbb{G}}_a}(x) = nx$, for $n > 0$.

Example

For the formal group \hat{G}_m , one can easily check that $[n]_{\hat{G}_m}(x) = (1+x)^n - 1.$

Suppose $\hat{\mathbb{G}}_{\mathsf{a}}$ and $\hat{\mathbb{G}}_{m}$ are isomorphic over a field k of characteristic $p > 0$. Then there exists a power series $\alpha(\mathsf{x}) = b_1 \mathsf{x} + b_2 \mathsf{x}^2 + \cdots \in k[[\mathsf{x}]]$ with $b_1 \neq 0$ such that $[p]_{\hat{\mathbb{G}}_a}(\alpha(x)) = \alpha([p]_{\hat{\mathbb{G}}}(x)) = \alpha(x^p)$ because all the coefficients of x^a with $1 \le a < p$ are 0 modulo p.

KADY E YEAR E YOUR

Let Γ be the set of power series $\gamma(t) \in R[[t]]$ that don't have constant terms, i.e. $\gamma(t)=b_1t+b_2t^2+\cdots$. Given two such power series $\gamma_1(t)$, $\gamma_2(t)$, the power series $F(\gamma_1(t), \gamma_2(t))$ is in Γ . Define the addition on Γ to be $\gamma_1(t) + \gamma_2(t) = F(\gamma_1(t), \gamma_2(t))$. Then Γ becomes a group, denoted by $\mathscr{C}(F)$.

 $\bullet \bullet \equiv \bullet \equiv \bullet \land \alpha \land \bullet$

Let Γ be the set of power series $\gamma(t) \in R[[t]]$ that don't have constant terms, i.e. $\gamma(t)=b_1t+b_2t^2+\cdots$. Given two such power series $\gamma_1(t)$, $\gamma_2(t)$, the power series $F(\gamma_1(t), \gamma_2(t))$ is in Γ . Define the addition on Γ to be $\gamma_1(t) + \gamma_2(t) = F(\gamma_1(t), \gamma_2(t))$. Then Γ becomes a group, denoted by $\mathscr{C}(F)$.

If $F(x, y)$ is commutative, so is Γ.

 $\bullet \bullet \equiv \bullet \equiv \bullet \land \alpha \land \bullet$

Let Γ be the set of power series $\gamma(t) \in R[[t]]$ that don't have constant terms, i.e. $\gamma(t)=b_1t+b_2t^2+\cdots$. Given two such power series $\gamma_1(t)$, $\gamma_2(t)$, the power series $F(\gamma_1(t), \gamma_2(t))$ is in Γ . Define the addition on Γ to be $\gamma_1(t) + \gamma_2(t) = F(\gamma_1(t), \gamma_2(t))$. Then Γ becomes a group, denoted by $\mathscr{C}(F)$.

If $F(x, y)$ is commutative, so is Γ.

Example

We take F to be the multiplicative formal group law. Then $\mathscr{C}(F)$ is the underlying additive group of the ring of Witt vectors $W(R)$.

KARA ERKER COA

Universal formal group law

Let A, B be two rings and $\phi : A \rightarrow B$ be a ring homomorphism. Then given a formal group law $\mathcal{F}(\mathsf{x},\mathsf{y}) = \mathsf{x} + \mathsf{y} + \sum_{(i,j) \gneq (1,1)} \mathsf{c}_{i,j} \mathsf{x}^i \mathsf{y}^j$ over A , we can construct another formal group law over B:

$$
\phi_*F(x,y)=x+y+\sum_{(i,j)\geqslant(1,1)}\phi(c_{i,j})x^iy^j.
$$

Universal formal group law

Let A, B be two rings and $\phi : A \rightarrow B$ be a ring homomorphism. Then given a formal group law $\mathcal{F}(\mathsf{x},\mathsf{y}) = \mathsf{x} + \mathsf{y} + \sum_{(i,j) \gneq (1,1)} \mathsf{c}_{i,j} \mathsf{x}^i \mathsf{y}^j$ over A , we can construct another formal group law over B:

$$
\phi_*F(x,y)=x+y+\sum_{(i,j)\geqslant(1,1)}\phi(c_{i,j})x^iy^j.
$$

Q: Is there a universal formal group law over a ring from which all other formal group laws over a ring can be derived?

Universal formal group law

Let A, B be two rings and $\phi : A \rightarrow B$ be a ring homomorphism. Then given a formal group law $\mathcal{F}(\mathsf{x},\mathsf{y}) = \mathsf{x} + \mathsf{y} + \sum_{(i,j) \gneq (1,1)} \mathsf{c}_{i,j} \mathsf{x}^i \mathsf{y}^j$ over A , we can construct another formal group law over B:

$$
\phi_*F(x,y)=x+y+\sum_{(i,j)\geqslant(1,1)}\phi(c_{i,j})x^iy^j.
$$

Q: Is there a universal formal group law over a ring from which all other formal group laws over a ring can be derived? A: Such a universal formal group law exists over a certain ring L called the Lazard ring!

 \mathbf{p} , and \mathbf{p} is \mathbf{p} .

Definition

An *n*-dimensional formal group law over a ring \overline{A} is an *n*-tuple of power series $F(X, Y) = (F_1(X, Y), F_2(X, Y), \ldots, F_n(X, Y))$ in 2n variables $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ such that $F_k(X, Y) = X_k + Y_k \mod \deg 2$ terms. ■ $F_k(F(X, Y), Z) = F_k(X, F(Y, Z)).$

As in the one-dimensional case, there exists an *n*-tuple of power series $i(X) = (i_1(X), \ldots, i_n(X))$ such that $F(X, i(X)) = 0$.

KADY E KEPITE KAD

Definition

An *n*-dimensional formal group law over a ring \overline{A} is an *n*-tuple of power series $F(X, Y) = (F_1(X, Y), F_2(X, Y), \dots, F_n(X, Y))$ in 2n variables $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ such that $F_k(X, Y) = X_k + Y_k \mod \deg 2$ terms. ■ $F_k(F(X, Y), Z) = F_k(X, F(Y, Z)).$ As in the one-dimensional case, there exists an *n*-tuple of power

series $i(X) = (i_1(X), \ldots, i_n(X))$ such that $F(X, i(X)) = 0$. Again, we can expect a universal *n*-dimensional formal group law,

and it indeed exists.

KADY E YEAR E YOUR

Example

The *n*-dimensional additive formal group law $\hat{\mathbb{G}}_a^n(X,Y) = X + Y$.

BERGISCHE PPERTAL

 \equiv \cap $\alpha \wedge$ す 何 メ イ ヨ メ イ ヨ メー

Example

The *n*-dimensional additive formal group law $\hat{\mathbb{G}}_a^n(X,Y) = X + Y$.

Example

An anonymous 4-dimensional formal group law:

$$
F_1(X, Y) = X_1 + Y_1 + X_1Y_1 + X_2Y_3
$$

\n
$$
F_2(X, Y) = X_2 + Y_2 + X_1Y_2 + X_2Y_4
$$

\n
$$
F_3(X, Y) = X_3 + Y_3 + X_3Y_1 + X_4Y_3
$$

\n
$$
F_4(X, Y) = X_4 + Y_4 + X_3Y_2 + X_4Y_4
$$

ERTAL

Infinite dimensional formal group laws

Definition

An (infinite) dimensional formal group law with (possibly infinite) index set I over a ring A consists of power series $F_i(X, Y) = \sum_{\mathsf{m},\mathsf{n}} c_{\mathsf{m},\mathsf{n}}^i X^{\mathsf{m}} Y^{\mathsf{n}} \in A[[X_i, Y_i; i \in I]]$ one for each $i \in I$, such that

$$
\blacksquare \ \ F_i(X, Y) \equiv X_i + Y_i, \mod \deg 2 \ \text{terms}, \forall i \in I.
$$

E For every **m**, **n** there are only finitely many $i \in I$ such that $c_{\mathbf{m},\mathbf{n}}^i \neq 0$.

$$
F_i(F(X, Y), Z) = F_i(X, F(Y, Z)), \forall i \in I.
$$

Infinite dimensional formal group laws

Definition

An (infinite) dimensional formal group law with (possibly infinite) index set I over a ring A consists of power series $F_i(X, Y) = \sum_{\mathsf{m},\mathsf{n}} c_{\mathsf{m},\mathsf{n}}^i X^{\mathsf{m}} Y^{\mathsf{n}} \in A[[X_i, Y_i; i \in I]]$ one for each $i \in I$, such that

$$
\blacksquare \ \ F_i(X, Y) \equiv X_i + Y_i, \mod \deg 2 \ \text{terms}, \forall i \in I.
$$

E For every **m**, **n** there are only finitely many $i \in I$ such that $c_{\mathbf{m},\mathbf{n}}^i \neq 0$.

$$
F_i(F(X, Y), Z) = F_i(X, F(Y, Z)), \forall i \in I.
$$

Unfortunately, there doesn't exist a universal infinite dimensional formal group law, because there's no way to predict which finitely many $c_{\mathsf{m},\mathsf{n}}^i$ are non-zero.

 \mathbf{y} of \mathbf{B} and \mathbf{y}

There are many ways to construct a formal group law. Below is an example of it that is quite different from the "trivial" ones discussed below.

 Ω 医尿囊下列

There are many ways to construct a formal group law. Below is an example of it that is quite different from the "trivial" ones discussed below.

Let R be a ring of characteristic 0. Let $f(x) \in R \otimes \mathbb{Q}$ be a power series of the form $f(x) = x + a_2x^2 + \cdots$. Then it has an inverse power series $f^{-1}({\mathsf{x}}).$ Now define

$$
F(x,y)=f^{-1}(f(x)+f(y)).
$$

There are many ways to construct a formal group law. Below is an example of it that is quite different from the "trivial" ones discussed below.

Let R be a ring of characteristic 0. Let $f(x) \in R \otimes \mathbb{Q}$ be a power series of the form $f(x) = x + a_2x^2 + \cdots$. Then it has an inverse power series $f^{-1}({\mathsf{x}}).$ Now define

$$
F(x,y)=f^{-1}(f(x)+f(y)).
$$

One can easily verify that it satisfies commutativity, associativity, and the inverse is given by $i(x) = f^{-1}(-f(x))$. Such a power series $f(x)$ is called the logarithm of $F(x, y)$.

The formal group law constructed above is not an interesting one because it's always isomorphic (via $f(x)$) to the additive formal group law $\hat{\mathbb{G}}_{\mathsf{a}}$ over the ring $R\otimes \mathbb{Q}.$

The formal group law constructed above is not an interesting one because it's always isomorphic (via $f(x)$) to the additive formal group law $\hat{\mathbb{G}}_{\mathsf{a}}$ over the ring $R\otimes \mathbb{Q}.$ However, if $f(x)$ satisfies a collection of functional equations(one for each prime p), the associated $F(x, y)$ has coefficients in $R \subset R \otimes \mathbb{Q}$.

The formal group law constructed above is not an interesting one because it's always isomorphic (via $f(x)$) to the additive formal group law $\hat{\mathbb{G}}_{\mathsf{a}}$ over the ring $R\otimes \mathbb{Q}.$ However, if $f(x)$ satisfies a collection of functional equations(one for each prime p), the associated $F(x, y)$ has coefficients in $R \subset R \otimes \mathbb{Q}$.

Given a power series $g(x) = \sum_{i=1}^{\infty} b_i x^i$ with b_1 invertible in R , we have a new power series depending on $g(x)$:

$$
f_g(x) = g(x) + \sum_{i=1}^{\infty} s_i \sigma^i_* f_g(x^{q^i}) \in R \otimes \mathbb{Q}[[x]]
$$

which makes $F_{\cal g}(\mathsf x,\mathsf y)=f_{\cal g}^{-1}(f_{\cal g}(\mathsf x)+f_{\cal g}(\mathsf y))$ a formal group law over R.

The setup for this procedure is as follows:

A is a subring of K, $\sigma: K \to K$ is a ring homomorphism, a is an ideal of A, p is a prime number, q is a power of p, s_1, s_2, \ldots are elements in K

These ingredients are required to satisfy the following relations:

$$
\sigma(A)\subset A, \sigma(a)\equiv a^q\mod \mathfrak{a}, \forall a\in A, p\in \mathfrak{a}, s_i\mathfrak{a}\subset A, i=1,2,\ldots.
$$

In addition, we require

$$
\mathfrak{a}^rb\subset\mathfrak{a}\Rightarrow\mathfrak{a}^r\sigma(b)\subset\mathfrak{a}
$$

for all positive integer r and $b \in K$.

Functional equation-integrality lemma: Assume all the conditions in the previous page, and in addition let $g(x)=\sum_{i=1}^\infty b_i x^i, \bar{g}(x)=\sum_{i=1}^\infty \bar{b_i} x^i$ be two power series over A . Then we have

- (i) the formal group law $F_g(x, y) = f_g^{-1}(f_g(x) + f_g(y))$ has its coefficients in A.
- (i) the power series $f_g^{-1}(f_g(x))$ has its coefficients in A.
- (iii) if $h(X) = \sum_{n=1}^{\infty} c_n x^n$ is a power series with coefficients in A, then there is a power series $\hat{h}(x) = \sum_{n=1}^{\infty} \hat{c}_n x^n$ with $\hat{c}_n \in A$ such that $f_g(h(x)) = f_{\hat{h}}(x)$.
- (iv) if $\alpha(x) \in A[[x]], \beta(x) \in K[[x]]$ are two power series with coefficients in A and K respectively and r is a positive integer, then we have

 $\alpha(x) \equiv \beta(x) \mod \mathfrak{a}^r A[[x]] \Leftrightarrow f_g(\alpha(x)) \equiv f_g(\beta(x)) \mod \mathfrak{a}^r A[[x]]$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

For example, a set of ingredients can be

$$
A = \mathbb{Z}_{(p)}, K = \mathbb{Q}, \sigma = id, \mathfrak{a} = p\mathbb{Z}_{(p)},
$$

\n
$$
q = p, s_1 = p^{-1}, s_2 = s_3 = \dots = 0.
$$

\nWe set $g(x) = x$, and $\bar{g}(x) = \sum_{(n,2)=1} n^{-1} (x^n - x^{2n})$ if $p = 2$ and
\n $\bar{g}(x) = \sum_{(n,p)=1} (-1)^{n+1} n^{-1} x^n$ if $p > 2$. Then we have
\n
$$
f_g(x) = x + p^{-1} x^p + p^{-2} x^{p^2} + \dots := H(x)
$$

\n
$$
f_{\bar{g}}(x) = \log(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} := I(x)
$$

By Functional equation-integrality lemma, the power series $Exp(H(x))$ has coefficients in A.

(個) (目) (目)

VERSITÄT

 Ω

 $n=1$

By giving different sets of ingredients, we can produce many non-isomorphic formal group laws. Some other options are:

$$
A=\mathbb{Z}, K=\mathbb{Q}, \sigma=id, q=p, \mathfrak{a}=p\mathbb{Z}, s_i\in p\mathbb{Z}
$$

不重 的人

 Ω

By giving different sets of ingredients, we can produce many non-isomorphic formal group laws. Some other options are:

$$
A=\mathbb{Z}, K=\mathbb{Q}, \sigma=id, q=p, \mathfrak{a}=p\mathbb{Z}, s_i\in p\mathbb{Z}
$$

$$
A = \mathbb{Z}[V_1, V_2, \dots; W_1, W_2, \dots] = \mathbb{Z}[\mathbf{V}, \mathbf{W}], K = \mathbb{Q}[\mathbf{V}, \mathbf{W}]
$$

\n
$$
\sigma/\mathbb{Q}: K \to K, V_i \mapsto V_i^p, W_i \mapsto W_i^p, q = p, \mathfrak{a} = pA,
$$

\n
$$
s_i = p^{-1}V_i, g(X) = X, \bar{g}(X) = X + \sum_{i=1}^{\infty} W_i X^{q^i}
$$

不重 的人

 Ω