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Definition

Let R be a commutative ring with identity.

Definition
A (one-dimensional) formal group F over R is given by a power
series F (x , y) ∈ R[[x , y ]] satisfying the following axioms:

(1) F (x , 0) = X ,F (0,Y ) = Y (Identity).

(2) F (x ,F (y , z)) = F (F (x , y), z)(Associativity).

If F (x , y) = F (y , x) is also satisfied, the formal group F is said to
be commutative.

The existence of inverses is automatic. For a formal group law
F (x , y), the inverse i(x) of x is determined by the equation
F (x , i(x)) = 0.
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Examples

•: The formal additive group, denoted by Ĝa, is given by the
formal group law F (x , y) = x + y .
•: The formal multiplicative group, denoted by Ĝm, is given by
F (x , y) = x + y + xy .

Theorem
If F (x , y) is a formal group law over R and F (x , y) ∈ R[x , y ], then
F (x , y) = x + y + cxy for some c ∈ R.

Theorem (Commutativity theorem)

Every one dimensional formal group law over a ring A is
commutative if and only if A contains no element a ̸= 0 that is
both torsion and nilpotent.
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Homomorphisms

Definition
Let F (x , y),G (x , y) be two formal group laws over R. A
homomorphism between them is a power series f (T ) ∈ R[[T ]]
such that

f (F (x , y)) = G (f (x), f (y)).

Definition
A homomorphism f (T ) between two formal groups F (x , y) and
G (x , y) over R is an isomorphism if there exists another power
series g(T ) such that

f (g(T )) = g(f (T )) = T .
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Examples of isomorphisms

Let E (x) and log(1 + x) be the following power series

E (x) =
∞∑
n=1

xn

n!
, log(1 + x) =

∞∑
n=1

(−1)n+1 x
n

n
.

Then they are isomorphisms between the additive formal group Ĝa

and the multiplicative formal group Ĝm over Q and inverse to each
other.

An interesting fact is, they are no longer isomorphisms when we
replace Q with a field k of characteristic p > 0. To see this, we
need the notion of [n]-series.
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and the multiplicative formal group Ĝm over Q and inverse to each
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n-series

Definition
For each integer n and a given formal group law F (x , y), the
n-series is defined by

[1](x) = x

[n](x) = F (x , [n − 1](x)), n > 1

[−n](x) = i([n](x)).

Moreover, they satisfy

[n](x) ≡ nx mod x2

[m + n](x) = F ([m](x), [n](x))

[mn](x) = [m]([n](x))



n-series

Example

For the formal group Ĝa, one can easily check that [n]Ĝa
(x) = nx ,

for n ≥ 0.

Example

For the formal group Ĝm, one can easily check that
[n]Ĝm

(x) = (1 + x)n − 1.

Suppose Ĝa and Ĝm are isomorphic over a field k of characteristic
p > 0. Then there exists a power series
α(x) = b1x + b2x

2 + · · · ∈ k[[x ]] with b1 ̸= 0 such that
[p]Ĝa

(α(x)) = α([p]Ĝ(x)) = α(xp) because all the coefficients of
xa with 1 ≤ a < p are 0 modulo p.
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For the formal group Ĝa, one can easily check that [n]Ĝa
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Groups associated to formal groups

Let Γ be the set of power series γ(t) ∈ R[[t]] that don’t have
constant terms, i.e. γ(t) = b1t + b2t

2 + · · · . Given two such
power series γ1(t), γ2(t), the power series F (γ1(t), γ2(t)) is in Γ.
Define the addition on Γ to be γ1(t) + γ2(t) = F (γ1(t), γ2(t)).
Then Γ becomes a group, denoted by C (F ).

If F (x , y) is commutative, so is Γ.

Example

We take F to be the multiplicative formal group law. Then C (F )
is the underlying additive group of the ring of Witt vectors W (R).
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Universal formal group law

Let A,B be two rings and ϕ : A → B be a ring homomorphism.
Then given a formal group law
F (x , y) = x + y +

∑
(i ,j)≩(1,1) ci ,jx

iy j over A, we can construct
another formal group law over B:

ϕ∗F (x , y) = x + y +
∑

(i ,j)≩(1,1)

ϕ(ci ,j)x
iy j .

Q: Is there a universal formal group law over a ring from which all
other formal group laws over a ring can be derived?
A: Such a universal formal group law exists over a certain ring L
called the Lazard ring!
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n-dimensional formal group law

Definition
An n-dimensional formal group law over a ring A is an n-tuple of
power series F (X ,Y ) = (F1(X ,Y ),F2(X ,Y ), . . . ,Fn(X ,Y )) in 2n
variables X = (X1, . . . ,Xn),Y = (Y1, . . . ,Yn) such that

■ Fk(X ,Y ) = Xk + Yk mod deg 2 terms.

■ Fk(F (X ,Y ),Z ) = Fk(X ,F (Y ,Z )).

As in the one-dimensional case, there exists an n-tuple of power
series i(X ) = (i1(X ), . . . , in(X )) such that F (X , i(X )) = 0.

Again, we can expect a universal n-dimensional formal group law,
and it indeed exists.
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Examples

Example

The n-dimensional additive formal group law Ĝn
a(X ,Y ) = X + Y .

Example

An anonymous 4-dimensional formal group law:

F1(X ,Y ) = X1 + Y1 + X1Y1 + X2Y3

F2(X ,Y ) = X2 + Y2 + X1Y2 + X2Y4

F3(X ,Y ) = X3 + Y3 + X3Y1 + X4Y3

F4(X ,Y ) = X4 + Y4 + X3Y2 + X4Y4
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Infinite dimensional formal group laws

Definition
An (infinite) dimensional formal group law with (possibly infinite)
index set I over a ring A consists of power series
Fi (X ,Y ) =

∑
m,n c

i
m,nX

mY n ∈ A[[Xi ,Yi ; i ∈ I ]] one for each i ∈ I ,
such that

■ Fi (X ,Y ) ≡ Xi + Yi , mod deg 2 terms, ∀i ∈ I .

■ For every m,n there are only finitely many i ∈ I such that
c im,n ̸= 0.

■ Fi (F (X ,Y ),Z ) = Fi (X ,F (Y ,Z )), ∀i ∈ I .

Unfortunately, there doesn’t exist a universal infinite dimensional
formal group law, because there’s no way to predict which finitely
many c im,n are non-zero.
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Construction of formal group laws

There are many ways to construct a formal group law. Below is an
example of it that is quite different from the ”trivial” ones
discussed below.

Let R be a ring of characteristic 0. Let f (x) ∈ R ⊗Q be a power
series of the form f (x) = x + a2x

2 + · · · . Then it has an inverse
power series f −1(x). Now define

F (x , y) = f −1(f (x) + f (y)).

One can easily verify that it satisfies commutativity, associativity,
and the inverse is given by i(x) = f −1(−f (x)). Such a power
series f (x) is called the logarithm of F (x , y).
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Construction of formal group laws

The formal group law constructed above is not an interesting one
because it’s always isomorphic (via f (x)) to the additive formal
group law Ĝa over the ring R ⊗Q.

However, if f (x) satisfies a collection of functional equations(one
for each prime p), the associated F (x , y) has coefficients in
R ⊂ R ⊗Q.

Given a power series g(x) =
∑∞

i=1 bix
i with b1 invertible in R, we

have a new power series depending on g(x):

fg (x) = g(x) +
∞∑
i=1

siσ
i
∗fg (x

qi ) ∈ R ⊗Q[[x ]]

which makes Fg (x , y) = f −1
g (fg (x) + fg (y)) a formal group law

over R.
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Construction of formal group laws

The setup for this procedure is as follows:
A is a subring of K , σ : K → K is a ring homomorphism, a is an
ideal of A, p is a prime number, q is a power of p, s1, s2, . . . are
elements in K .
These ingredients are required to satisfy the following relations:

σ(A) ⊂ A, σ(a) ≡ aq mod a, ∀a ∈ A, p ∈ a, sia ⊂ A, i = 1, 2, . . . .

In addition, we require

arb ⊂ a ⇒ arσ(b) ⊂ a

for all positive integer r and b ∈ K .



Construction of formal group laws

Functional equation-integrality lemma: Assume all the
conditions in the previous page, and in addition let
g(x) =

∑∞
i=1 bix

i , ḡ(x) =
∑∞

i=1 b̄ix
i be two power series over A.

Then we have

(i) the formal group law Fg (x , y) = f −1
g (fg (x) + fg (y)) has its

coefficients in A.
(ii) the power series f −1

g (fg (x)) has its coefficients in A.
(iii) if h(X ) =

∑∞
n=1 cnx

n is a power series with coefficients in A,
then there is a power series ĥ(x) =

∑∞
n=1 ĉnx

n with ĉn ∈ A
such that fg (h(x)) = fĥ(x).

(iv) if α(x) ∈ A[[x ]], β(x) ∈ K [[x ]] are two power series with
coefficients in A and K respectively and r is a positive integer,
then we have

α(x) ≡ β(x) mod arA[[x ]] ⇔ fg (α(x)) ≡ fg (β(x)) mod arA[[x ]].



Construction of formal group laws

For example, a set of ingredients can be

A = Z(p),K = Q, σ = id , a = pZ(p),

q = p, s1 = p−1, s2 = s3 = · · · = 0.

We set g(x) = x , and ḡ(x) =
∑

(n,2)=1 n
−1(xn − x2n) if p = 2 and

ḡ(x) =
∑

(n,p)=1(−1)n+1n−1xn if p > 2. Then we have

fg (x) = x + p−1xp + p−2xp
2
+ · · · := H(x)

fḡ (x) = log(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
:= l(x)

By Functional equation-integrality lemma, the power series
Exp(H(x)) has coefficients in A.



Construction of formal group laws

By giving different sets of ingredients, we can produce many
non-isomorphic formal group laws. Some other options are:

A = Z,K = Q, σ = id , q = p, a = pZ, si ∈ pZ

A = Z[V1,V2, . . . ;W1,W2, . . . ] = Z[V,W],K = Q[V,W]

σ/Q : K → K ,Vi 7→ V p
i ,Wi 7→ W p

i , q = p, a = pA,

si = p−1Vi , g(X ) = X , ḡ(X ) = X +
∞∑
i=1

WiX
qi
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